Assessment of proprioceptive ability in healthy and disabled individuals

Daniel J. Goble, PhD
Visiting Scholar and CIHR Fellow
PMR, University of Michigan
OUTLINE

1. Some basics about proprioception
2. The truth about “Proprioceptive Matching”
 • Factors affecting tests of proprioceptive acuity
3. Moving beyond behavior: Using fMRI for mapping proprioceptive feedback processing
 • fMRI + Tendon Vibration
Traditional View of Sensation

Allegory of the Five Senses, 1668, Gerard De Lairesse
The sixth sense?

- Muscles have motor and **SENSORY** nerves
- “Muscle Sense”

- “Proprioception”
 - Prioprius – one’s own
 - Ception – perception
 - Sensory signals arising from one’s own actions

Sir Charles Bell - 1774-1842

Sir Charles Sherrington - 1857-1952
Proprioception:

- Conscience perception of body position and movement in the absence of vision

“Position sense”

“Kinesthesia”

Field Sobriety test of proprioception
The Proprioceptive Pathway

Skin, Joint, MUSCLE
Muscle Spindles

- Stretch receptors
- Located intramuscularly

- Firing pattern corresponds with muscle length (position sense) and changes in muscle length (kinesthesis)
Muscle Spindles

Tendon Vibration
– Stimulates Muscle Spindle Firing
– @ 80-120Hz get Illusions of altered position and movement
Central Processing of Proprioceptive Feedback

Primary Somatosensory Area

- Penfield (1954)
How Important is Proprioception?

Cup Stacking

Vision

No Vision
(Proprioception?)
How Important is Proprioception?

Deafferentation – A Clinical Example

“Pride and Daily Marathon” – Jonathon Cole
How to Measure Proprioception?

Direction Test
1. Move Joint
2. Subject Response

Pros
– Good indicator of whether pathway is intact.

Cons
– Can’t quantitatively measure acuity
– Can’t distinguish position vs. movement sense
How to Measure Proprioception?

Matching Test

1. Establish Target
2. Subject Match

Pros
- Pathway Intact
- Measure of acuity
- Position/Movement possible

Cons
- Increased cognitive and perceptual demands
Factors that influence estimates of proprioceptive acuity when using matching tasks

Motor Control Laboratory – Susan Brown, PhD
Experimental Set-up – Elbow Matching Task

10-20 participants, 30-60 trials

Potentiometer

Blindfold + Head Support

Programmable Servomotor
Factor #1 – Matching Task Type

Multiple ways to perform matching:

1. Ipsilateral Matching
2. Contralateral Matching
3. Contralateral Remembered Matching
Factor #1 – Matching Task Type

Multiple ways to perform matching:

1. Ipsilateral Matching
 • INTRA-limb match

Requires MEMORY
Factor #1 – Matching Task Type

Multiple ways to perform matching:

2. Contralateral Matching
 • INTER-limb Match

Requires
INTERHEMISPHERIC TRANSFER (IHT)
Factor #1 – Matching Task Type

Multiple ways to perform matching:

3. Contralateral Remembered Matching
 • INTER-limb match with delay

Requires both MEMORY and IHT
Factor #1 – Matching Task Type

↑ error with greater processing demands

1.25 deg = 1 cm
TAKE HOME – TASK TYPE

• Task type can bias estimates of proprioceptive ability

• Task Selection is key for:
 – Pop’n prone to memory deficits
 – Pop’n with degraded interhemispheric pathways
Factor #2 – Matching Hand

- Human are unique with ~90% “right-handed”
- Enduring across cultures and time

(Coren and Porac 1977)
Factor #2 - Matching Hand

Right arm MOTOR dominance

- Stronger
- Faster
- Less Variable

Dominant arm > Sinistral?

(Woodworth 1899; Liepmann 1908,1920; Provins 1967; Peters 1976; Annett et al 1979)

Left Hemispheric Specialization?
Factor #2 - Matching Hand

What about SENSORY feedback?

Vision?

Proprioception?

Two-handed tasks
Sensory Modality Hypothesis of Handedness (SMHH)

Preferred Arm

Vision

Non-Preferred Arm

Proprioception
Factor #2 - Matching Hand

Proprioceptive Matching

Visual Matching

(Goble and Brown 2008)
Factor #2 - Matching Hand

(Goble and Brown 2008)
Sensory Modality Hypothesis of Handedness (SMHH)

Faith Brynie

Preferred Arm

Vision

Proprioception

Non-Preferred Arm

Hemispheric Dominance??
Unilateral Brain Injury

• 8 Typical children
• 8 Cerebral Palsy
 – 4 Right Hemi*
 – 4 Left Hemi
• Ipsilateral Matching

(Goble et al, 2009)
• Non-preferred arm advantage for JPM

• Right-hemisphere specialization for proprioceptive feedback processing
 – Individuals with right hemisphere brain injury more prone to proprioceptive deficits?
 • Dukelow (2010) - stroke
Factor #3 – Target Establishment

How targets are established matters

1. Amplitude
2. Duration of Hold time
Factor #3 – Target Establishment

Amplitude

• ↑ target amplitude lead to greater error
• Due to sensorimotor noise???

(Goble et al, 2006)
Factor #3 – Target Establishment

Duration of Hold Time

• Encoding of target position more complete with longer hold time?
• Drift?

(Goble, Noble and Brown 2010)
TAKE HOME – TARGET EFFECTS

- Target presentation impacts perception and accuracy of matching

- Researchers/Clinicians must ensure consistent presentation of targets across time/patients to allow for comparison of data
Use of fMRI for mapping brain areas related to proprioceptive feedback – aging as an example

Motor Control Laboratory – Stephan Swinnen, PhD
Aging – it’s happening

- Proportion of individuals 65yrs+ is increasing
Proprioception across lifespan

• Changes in proprioceptive receptor number across lifespan

• Refinement of neural pathways with experience

(Goble 2010)
Proprioception in the Elderly

What do we know?

• Many age-related BEHAVIORAL assessments of proprioceptive ability.

• What about the brain?

(Goble et al, 2009)
How to study proprioceptive processing in the elderly?

Proprioceptive Brain Mapping

Tendon Vibration (TV) + neuroimaging (fMRI)

- TV Induces firing of muscle and illusions of position and movement @ 80-120Hz
- Problem: creation of non-magnetic TV device

MRI compatible vibration device

www.magconcept.com
Proprioceptive Brain Mapping - fMRI

20 young
20 older

Blocks (30s)
- No Vibration
- Tendon
- Bone

Mouse
- Attention

Vibration Devices
- Bone vs. Tendon
Results – Young and Old

Tendon > Bone
(i.e. muscle spindle related activity)

• Left foot – Pink
• Right foot – Blue
• Both - Green

FWE p<.05
Results - Young > Old

- 1/3 cells respond to passive limb displacement
- Decrease proprioception in Parkinson’s Disease
Does this mean anything functionally?

• Ipsilateral Matching for proprioceptive ability
Corr between JPM and TV Mapping

A.

Bold Response (% Signal Change) vs. Joint Postion Sense (Total Error) for OLDER and YOUNGER groups.

- OLDER: r = -0.40
- YOUNGER: r = -0.39

R putamen
Take Home – Part #2

• Many areas involved in perception of proprioceptive feedback

• Proprioceptive Brain Mapping can be used to reveal differences in activation between groups of individuals

• Relationships between mapped areas and behavior on tasks requiring proprioceptive feedback processing are possible
Acknowledgements

Collaborators:
Motor Control Lab UM – Susan Brown
Motor Control Lab KUL – Stephan Swinnen

Funding:
QUESTIONS????
What about Lefties?

Mirror Image?

• Unclear in literature
 – Variety of reasons

• Often referred to as less lateralized, more variable

(Goble et al., 2009)
Proprioceptive Mirror Image

(Goble et al., 2009)