Mitigating Biomechanical Analyses of Human Movement and the Implications for Clinical Interventions

Richard R. Neptune

T. MacGuire Professor; Department of Mechanical Engineering, The University of Texas - Austin

The human neuromusculoskeletal system is exceedingly complex due to highly nonlinear dynamics and muscle actuators, and redundant muscle control. As a result, gaining insight into normal and pathological movement remains a challenge due to the extremely difficult task of measuring the principle elements of muscle coordination and the effects of individual muscle forces on the resulting movement. This talk will discuss how experimental and modeling and simulation techniques are being used to gain insight into the biomechanics and neuromotor control of human movement with the goal to improve rehabilitation outcomes for those with movement impairments. Specifically, we will look at how individual muscles contribute to specific biomechanical task demands of human movement and the implications for prescribing clinical interventions.

Bio: Dr. Richard R. Neptune earned his Ph.D. in Mechanical Engineering from the University of California, Davis and has served on the Department of Mechanical Engineering faculty at UT Austin since 2001. His research integrates musculoskeletal modeling, computer simulation and experimental analyses to identify the neuromotor and biomechanical mechanisms that contribute to locomotor impairments in those with movement disabilities including lower-limb amputees, stroke patients and wheelchair users. His research also seeks to improve the performance of orthotic and prosthetic devices using advanced additive manufacturing techniques. He has received a number of awards for his teaching and research including the CAREER award from the National Science Foundation, the Joe and Bettie Branson Ward Endowed Excellence Award from The University of Texas at Austin for his teaching and research that has contributed to changes of positive value to society, the Lockheed Martin Aeronautics Company Award for Excellence in Engineering Teaching, the Van C. Mow Medal from the American Society of Mechanical Engineers, and the Founders Award from the American Society of Biomechanics. He is currently the Chair of the Department of Mechanical Engineering and a Provost Teaching Fellow, and holds the John T. MacGuire Professorship in Mechanical Engineering.